Pressure Sensors and Their Use in Aquatic and Underwater Applications

Pressure sensors are essential safety and logistic equipment in a number of underwater applications. For scuba diving, a reliable depth gauge or diving watch is crucial to estimating diving depth and ensuring safe ascent and descent.

Historically, many dive watches and depth gauges have been analog designs. Digital pressure sensors have several advantages over analog sensors and can be easily interfaced with dive computers that combine information from multiple sensors.

A digital pressure sensor will consist of the sensing element; for pressure sensors, this is often a piezoresistive element and a transducer to convert the sensor response into a digital signal for processing. Digital sensors can be very compact, with no moving parts and can be used in harsh and corrosive environments, including in salt waters. Piezoresistive sensors are particularly well-suited for aquatic measurements as they have few restrictions on their operating depths.1

Common applications of such pressure sensors include sonar buoys, sometimes known as sonobuoys, tank and ocean depth measurements, dive watches and fishing.

MS Series inside Diving Watch

Merit Sensor Systems

Merit Sensor Systems is a leading expert in pressure sensors for a number of applications, including diving and freshwater work. Merit Sensor Systems offers several different sensing devices with incredibly small footprints and ultra-low power draw. The low power consumption is essential for many remote aquatic applications as devices must be battery operated and require a battery life of many hours.

For sonar buoys, deployable devices that use sonar signals to locate passing submarines and marine traffic or monitor tidal conditions, Merit Sensor Systems has developed pressure sensors that can replace the traditional wire/line technology. Normally, a buoy would be deployed with a spool of wire connecting the device to a float at the surface and the length of the wire is used to estimate the depth of the device. However, as the ocean is constantly moving, the wire displacement is often a bad measure of the depth due to lateral deflections of the device while it is in the water. A pressure sensor can instead provide more accurate depth measurements by measuring the local water pressure.

For sonar buoys, Merit Sensor Systems offers a range of suitable sensors, including the HTS 1510 Series, the TR series and, for more limited operating depths, the ultra low power MS series. All of these are highly compact, lightweight sensors that can be easily incorporated into a range of devices and provide many hours of continuous operation. The HTS series will also soon feature a Sleep mode so that the battery life can be further preserved.

All of the Merit Sensor Systems series are extremely media compatible with a range of water environments and conditions. The MS series is gel-filled for additional protection and its compact design footprint means it has been successfully used in dive watches. The MS series is an affordable option with excellent stability over an extensive temperature range and is also RoHS compliant.

HTS, TR, & MS Series in underwater applications.

Calculating Depth

Why do pressure sensors work so well for recovering depth information? As the density of water is constant in most environments, as is gravity, the underwater pressure is directly proportional to the submersion depth. With onboard electronics for the processing, a pressure sensor can rapidly convert these pressure readings into a measurement of submersion depth or even the local water level.

Diving computers can display and process a range of pressure information, from remaining gas levels in breathing tanks to diving depth. Some dive computers will use this to calculate the remaining safe time for a dive.

All of the Merit Sensor Systems pressure sensor series can be integrated as part of digital systems, but the HTS 1510 Series has the choice of providing digital or analog outputs.

Important for live depth calculations, all of the pressure sensors have 10 ms start up times in case devices need to be rebooted rapidly. Each pressure sensor is less than 2 g in mass, including any protective housing and mounts required, particularly for saltwater applications.

These pressure sensors are characterized by their potential to perform high accuracy measurements with only 0.5 % FS lifetime drifts, incredibly low pressure and temperature hysteresis. Whether you need a pressure sensor that can uphold the highest safety standards for manual diving, or a quick readout sensor for 24/7 online water tank monitoring, Merit Sensor Systems has something to offer.

The HTS 1510 Series, the TR series and the MS series each have different designs and housing to optimize them for particular tasks. The MS series is a surface-mounted, ceramic device. The fully-compensated TR series is a direct-media pressure monitor, designed to plug and play with existing devices. The HTS1510 series is a backside-pressure monitor which can be surface-mounted and integrated into existing control boards.

Contact Merit Sensor Systems today to find out how their state-of-the-art pressure sensors could be integrated into your underwater devices.

References:

  1. Büttgenbach, S., Constantinou, I., Dietzel, A., & Leester-Schädel, M. (2020). Case Studies in Micromechatronics. In Case Studies in Micromechatronics. https://doi.org/10.1007/978-3-662-61320-7

For more information visit this article featured on AZOSensors.com

Implementing Pressure Sensors into HVAC Systems

HVAC systems are vital when it comes to ensuring indoor air quality, health, and inhabitant comfort management.HVAC systems also have a central role in enhancing a building’s energy efficiency, as HVAC systems represent almost 50 % of the total energy consumption of buildings in the US and 20 % of all total energy consumption.2

Global temperatures and weather are likely to force an increased reliance on HVAC systems worldwide, meaning increased energy consumption which places utmost importance on finding ways to improve the efficiency of HVAC systems.3

One of the ways to achieve this is by using smart management systems for HVAC to do things like switch off unnecessary heating or ventilation in low or zero-occupancy buildings to ensure that no energy is wasted.4

The use of sensors lies at the core of smart HVAC systems. Sensors facilitate ‘machine vision’ for an automated system, delivering the information required to make intelligent decisions predicated on current demand and specified performance.

Sensors can also be incorporated into HVAC systems to enhance climate control and help send alerts when necessary maintenance to avoid needless work, which may also prevent system downtime.

Pressure Sensors in HVAC

Merit Sensor Systems is a global leader in the design and development of high-performance pressure sensors. Pressure sensors are one of the most important components in HVAC system technology for monitoring system performance, reviewing compressor conditions, and monitoring ducts to test the airflow through the ventilation systems.

Merit Sensor Systems has the services that help clients find the appropriate pressure sensors to make HVAC systems safer, more reliable, and cheaper to run.

HVAC systems are made of several components as a single system will need to have the capacity of cooling, warming, and providing air transport around the system and ventilation.

Continuous real-time pressure monitoring is suitable for checking if rooms or filters have pressure drops across them in order to check occupancy and performance. HVAC pressure sensors can also be installed to preserve pressure levels in key airways or those that necessitate positive pressures for safety reasons, including hospital laboratories.

LP Pressure Sensor

Compression

Conventional HVAC units typically contain a compressor that compresses a refrigerant vapor until it is transformed into a hot gas.

Pressure monitoring is crucial to check for leaks in this refrigerant application and the compressor performance, which is made possible with the TVC Series. Once the hot air is produced, it is cooled with ambient air that is subsequently heated by the transfer.

The gaseous refrigerant is pumped towards an evaporator as it cools, where it flows through a restrictor device to reduce the pressure of the refrigerant and evaporate it, cooling the air for recirculation.

There are various compressor designs, but the majority utilize the compression, evaporation, and cooling cycle to lower the air temperature.

TVC Pressure Sensor

Choosing Pressure Sensors

There are a number of different applications and a significant demand for pressure sensors in HVAC systems, but to be useful, pressure sensors need to have specific performance levels.

Some of the pressure changes in HVAC, including pressure drops across filters as a result of slight clogging, may be very small. Therefore, the pressure sensor needs to have a good limit of detection.

Small pressure changes and small overall pressures can also be observed in ventilation systems that require extremely sensitive pressure sensors. As smart HVAC systems are typically used to reduce energy consumption and waste, the pressure sensors that are installed in the system need to be completely reliable.

Errant and erroneous readings could lead to poor performance in the HVAC system or even damage components if maintenance warnings are not offered at the appropriate times.

The extremely compact LP Series pressure sensor is also part of Merit Sensor Systems’ portfolio and helps address all of these issues.

The LP Series pressure sensor has a low footprint and can be easily integrated into a circuit board design without resulting in extra bulk or weight to the finished product. The small footprint makes integration into nearly any application possible without the need for majorly redesigning components.

LP Pressure Sensor

LP and TVC Series Pressure Sensors

For HVAC applications, the LP Series pressure sensor has a detection capacity down to just 250 Pa with a resolution of more than 0.01 Pa. Initially designed with a sensitivity for the measurement of differential or gauge pressures, this pressure sensor requires just a 3.3- to 3.5 V supply to start supplying accurate and meaningful data.

The LP series pressure sensor contains two connectable (with tubing) pressure points. The sensor can then be connected via I2C or analog output for data monitoring in real-time as well as integration into smart building management systems.

The TVC Series is ideal for measuring refrigerant gas at higher pressures. It was developed to create a stable output, even at temperatures between –40 to 150 °C. The TVC is tasked with monitoring HVAC systems, water levels, water pressure and processes. It can also be used for air-conditioning and other refrigerant systems.

Inside the TVC Pressure Sensor

Inside the LP Pressure Sensor

Contact Merit Sensor Systems today to discover more and discover how the LP and TVC Series can revolutionize the efficiency of HVAC systems, with the sensitivity to determine exactly when the next maintenance cycle is due.

References and Further Reading

  1. Bearg, D. W. (2019). Indoor air quality and HVAC systems. Routledge. https://doi.org/10.1201/9780203751152
  2. Perez-Lombard, L., Ortiz, J., & Pout, C. (2008). A review on buildings energy consumption information ´. Energy and Buildings, 40, 394–398. https://doi.org/10.1016/j.enbuild.2007.03.007
  3. Wang, H., & Chen, Q. (2020). Impact of climate change heating and cooling energy use in buildings in the United States. Energy & Buildings, 82(2014), 428–436. https://doi.org/10.1016/j.enbuild.2014.07.034
  4. Wang, H., & Chen, Q. (2020). Impact of climate change heating and cooling energy use in buildings in the United States. Energy & Buildings, 82(2014), 428–436. https://doi.org/10.1016/j.enbuild.2014.07.034

For more information, visit this article on AZOSensors.com

Electric Vehicle Cooling Systems and the Role of Pressure Sensors

The rise in popularity and uptake of electric vehicles cannot simply be put into words; one has to look at the data. Research carried out by the International Council on Clean Transportation (ICCT) in 2017 determined that global annual electric vehicle sales were increasing nearly at an exponential rate.1

TVC in an Electric Vehicle

By the end of 2020, more than 10 million electric cars were navigating roads across the world.2

Electric Vehicles are appealing to buyers for many reasons: they produce fewer emissions, can be operated at significantly lower costs and offer improved long-term prospects compared to gasoline-fueled cars.3–5

However, one of the greatest challenges in getting more people to convert to electric vehicles has long been the limited range that they can travel on a single charge.6 However, this obstacle is steadily being overcome.

Incremental improvements in battery technology are on the rise, and the maximum range of electric vehicles is extended with each advance, making electric vehicle ownership a more viable option for a future generation of drivers.

The Importance of Cooling Systems in Electric Vehicles

Attempts at improving battery capacity, however, can present certain challenges. The main question is related to cooling. Batteries generate heat when they charge and discharge. Therefore, the more energy a battery stores and the more quickly it charges or discharges, the more heat it will tend to create.

Vehicles that are entirely electric are equipped with a cooling system that maintains particular temperature limits in the vehicle’s power electronics and battery packs. The main role of the cooling system is to ensure that the battery temperature remains within safe operating limits.

If the lithium-ion battery pack’s temperature in any given cell gets too hot, it can provoke a chain reaction known as thermal runaway, in which the complete battery pack experiences catastrophic exothermic decomposition.7

Preventing overheating and thermal runaway is, of course, critical. The majority of EV cooling systems aim to keep battery packs at their optimum operating temperature most of the time.

Usually, this means a close-to-uniform temperature distribution in the 15 – 35 °C range.8 If temperatures are allowed to significantly vary throughout the pack or fall outside this particular range, then charging times and efficiency can be negatively affected resulting in a reduction in the service life of the battery.

EV Cooling Technologies

Electric vehicles employ various cooling technologies to manage the temperature of power systems: air, fins and liquid cooling.

Fin cooling is a simple and economical passive cooling mechanism that has been demonstrated to be successful in the world of electronics.

Effectively, building power-intensive components to feature fins and ridges as opposed to flat faces increases their surface area, thereby improving the rate at which they can dissipate heat to their surroundings.

However, fins have limited application in electric vehicles as they can increase the weight of power systems significantly.

Air cooling, the circulation of relatively cool air across the surface of a hot object, is another comparatively simple technology as it will cool it down more rapidly.

Air cooling is typically cost-effective and has been employed in some electric car models (including early models of the Nissan Leaf). However, this system can be relatively energy-intensive, and cars that are dependent on air cooling can run into trouble in hot weather.8

Liquid cooling is the most efficient way of controlling the temperature of batteries and power systems in electric vehicles.

Piping liquid coolant throughout power systems facilitates effective heat removal and while it is comparatively expensive and complex, it offers more precise temperature control of electronic systems and battery packs in electric vehicles.

As manufacturers are driving towards installing increasingly higher capacity battery packs in electric vehicles, the demands that these cooling systems must be able to cope with are also increasing.

Liquid cooling systems are becoming more crucial and complex as charging rates and battery capacity increase.9,10 Liquid cooling systems in today’s electric vehicles may necessitate subdivision of the cooling system into several circuits and heat exchange between battery coolant and A/C system refrigerant.

The Role of Pressure Sensors in EV Cooling Systems

Pressure is a key parameter in an electric vehicle’s liquid cooling system. Pressure sensors are vital components both for feedback for cooling system regulation and optimization as well as being able to detect pressure loss that could suggest a leak.

As liquid cooling systems grow in complexity, the demand for accurate and robust pressure sensors for EV cooling systems is now greater than any time before.

Merit Sensor Systems designs and manufactures a wide range of high-performance pressure sensors appropriate for demanding EV applications. The TR series sensors have been developed to offer precise pressure measurements in harsh media such as gases, oils and refrigerants.

TR series pressure sensors incorporate a hermetically sealed die that is able to take pressure measurements from the backside, where the media only comes into contact with the ceramic substrate, glass and gold-tin eutectic solder.

TR series sensors also offer accurate, dependable and robust pressure sensing in complex EV fluid system applications while rated for temperatures from -40 °C to 150 °C.

TR-Series face sealing integration (MeriTrek starter Kit) into metal/plastic housing.

TVC series sensors have been optimized for measuring mid-to-high pressures in refrigerant gases up to 2,000 kPa.

Mounting the silicon die sensing element at the top of a ceramic pressure port means the TVC sensors have the capacity to measure backside pressure while separating the media from internal electronics, offering reliable and robust pressure (burst pressure 5x) measurements over a prolonged service life, even in harsh media.

TVC-Series easy integration in metal / plastic housing with radial sealing (o-ring).

With simple sealing and electrical connections, TR and TVC series pressure sensors have been engineered for seamless integration into complex fluid system pipelines and rapid connectors owing to reliable face and radial sealing.

To discover more, contact Merit Sensor Systems and find out how its pressure sensors offer a series of unparalleled advantages in EV systems.

References

  1. Lutsey, N. & Nicholas, M. Update on electric vehicle costs in the United States through 2030. (2019).
  2. Global EV Outlook 2021 – Analysis. IEA https://www.iea.org/reports/global-ev-outlook-2021.
  3. How green are electric cars? | Environment | The Guardian.
  4. Running Costs of EVs: How much it costs to buy and run an electric car | OVO Energy. https://www.ovoenergy.com/guides/energy-guides/how-much-does-it-cost-to-charge-and-run-an-electric-car.htmlhttps://www.ovoenergy.com/guides/energy-guides/how-much-does-it-cost-to-charge-and-run-an-electric-car.html.
  5. How long before we run out of fossil fuels? Our World in Data https://ourworldindata.org/how-long-before-we-run-out-of-fossil-fuels.
  6. The real barriers to electric vehicle adoption. MIT Sloan https://mitsloan.mit.edu/ideas-made-to-matter/real-barriers-to-electric-vehicle-adoption.
  7. Feng, X., Ren, D., He, X. & Ouyang, M. Mitigating Thermal Runaway of Lithium-Ion Batteries. Joule 4, 743–770 (2020).
  8. Chen, D., Jiang, J., Kim, G.-H., Yang, C. & Pesaran, A. Comparison of different cooling methods for lithium ion battery cells. Applied Thermal Engineering 94, 846–854 (2016).
  1. Design of Direct and Indirect Liquid Cooling Systems for High-Capacity, High-Power Lithium-Ion Battery Packs on JSTOR. https://www.jstor.org/stable/26169002.

For more information, visit this article on AZOSensors.com

Pressure Sensors for Medical Applications

Since manufacturers of medical equipment encounter constant pressures to balance cost and quality, pressure sensors present developers with contradictory requirements that can result in dangerous compromises. Pressure sensors pose a common reliability challenge that force manufacturers to depend on expensive ongoing maintenance and component replacement to work around the inherent short lifetime of the sensor. However, the stakes are still higher in medical applications, where these sensors have high accuracy and reliability requirements and where component failure can lead to safety risk.

Challenges

Despite the fact that the packaging of the sensor component is important in solving this issue, it is a challenge that has, until lately, eluded sensor manufacturers. A blood analyzer system is a typical use case. While this kind of medical application may not demand the pressure sensor to be operated in high temperatures or harsh fluids, even saline solution can eventually be corrosive, and the cleaning and sterilization process usually needs repeated contact with caustic chemicals such as bleach.

The main issue is that the adhesives that are employed to make the pressure seal and protect the sensor die and related circuitry ultimately soften in the surrounding fluid. The sensor circuitry is damaged, as soon as the seal breaks, thus creating a familiar reliability failure that can be high-priced if it causes a product recall or requires regular maintenance and replacement of the sensing subsystem.

Solution

An innovative new pressure sensor packaging approach creates an eutectic die bond on ceramic substrate using a gold-tin soldering alloy for a hermetic seal even in the presence of harsh fluids. When compared to the individual melting points, a gold-tin soldering bond with an 80:20 ratio makes an alloy with a much lower melting point, thus enhancing manufacturability while still retaining the benefits of both metals in severe environments. In addition, while this gold-tin solder is more expensive than adhesive, the cost differential is small in comparison to the considerable improvement in long-term maintenance costs and reliability.

The MSS100 sensor from Merit Sensor Systems employs back-side entry and eutectic die attach that protects sensor circuitry for cost-effective high reliability in medical applications.

Conclusion

Checking whether the pressure media comes in at the back side or top of the sensor is an additional aspect that needs to be considered while comparing sensor packaging approaches. The circuitry must be protected from corrosion or shorts if the pressure is on the top side of the sensor. This protection is usually achieved with a protective gel. However, a gel that is stiff enough to bear corrosive fluids is generally also stiff enough to cause stress to the MEMS element.

This may lead to intolerable sensing errors in most medical applications. On the contrary, back-side entry uncovers only the eutectic die attach, glass and silicon to the pressure medium—elements that have been proven to withstand this environment—with no accuracy concerns of top-side sensors.

For medical equipment, packaging for pressure sensing applications is crucial to remove regular compromises, enhance product lifetime reliability and lower ownership cost.

For more information, visit this article on AZOSensors.com

Blood-Pressure Monitoring During the COVID-19 Pandemic

As a result of the COVID-19 pandemic, many people have been in hospitals under critical care this year. These patients require beat-to-beat blood-pressure monitoring, which helps clinicians see important vital signs about the patient in real time over the length of the critical-care treatment and make clinical decisions accordingly. Therefore, continuous, reliable monitoring of a patient’s blood pressure is as important as ever.

Merit Sensor has been a supplier of blood-pressure sensors since 2010. Our parent company, Merit Medical, to whom we supply blood-pressure sensors, is one of the global leaders in blood-pressure transducers. Check out their newest transducer, the Meritrans DTXPlus. Through our experience and that of our parent company, we have learned what matters most to clinicians using invasive blood-pressure devices.

Meritrans DTXPlus Blood Pressure Transducer

Merit Medical’s Meritrans DTXPlus

One important factor is that the fluid column from the needle to the sensor should be free of bubbles. Bubbles dampen the pressure pulses in the fluid column and, therefore, degrade the conversion of the pressure signal. To prevent bubbles, clinicians routinely tap or whack the blood-pressure transducer with a hemostat or forceps. This certainly poses a risk to the integrity of the pressure sensor and can cause even greater issues than just dampened signals. However, due to the insight provided by our parent company and our in-house expertise, we have improved the BP Series design over the years and have produced a robust pressure sensor that is able to withstand this common debubbling practice.

Merit Sensor's BP Series pressure sensor

Merit Sensor’s BP Series

Another common-enough issue that could destroy a pressure sensor is the inadvertent opening of the transducer’s stopcock to an undesired pressure source. For example, when a clinician injects medicine or contrast through the line, there is a pressure spike of around 300 psi in the line. This is considerably greater than the typical pressure of blood pressure, which is around 2 psi. In order that the pressure sensor be accurate at such a low pressure, it must contain a very thin MEMS diaphragm. At Merit Sensor we have designed a blood-pressure-sensor package that provides accuracy at low pressure yet robustness when exposed to overpressure. The BP Series has a typical burst pressure of > 800 psi. As long as the overpressure does not damage the MEMS diaphragm or the sensor package, the sensor will return to its specified performance once it is again within its operating pressure range of −30 to 300 mmHg.

In addition to providing a robust pressure sensor that can withstand forceful tapping and high overpressure, Merit Sensor has complete control over its manufacturing processes and supply chain. We own and operate a wafer fab in South Jordan, Utah (USA). Our on-site wafer fab enables us to monitor production closely and ensure high quality with everything we produce. It also gives us the flexibility to meet unique requirements of our customers, who might have a unique application for a blood-pressure sensor. With Merit Sensor you get reliability as well as flexibility.

To learn more about the advantages of owning and operating a wafer fab, read this interview published by AZoSensors.

Pressure Measurement for Ventilators and Respirators

Merit Sensor has a long history of supplying products to the medical-device industry. We are owned by Merit Medical, a leading manufacturer and marketer of disposable medical devices used in interventional, diagnostic, and therapeutic procedures.

A couple of the products we supply for medical applications are the BP Series for monitoring blood pressure, where accuracy and reliability are extremely important, and the AP Series for angioplasty, where knowing the precise pressure of the catheter balloon is essential.

The current demand for mechanical ventilators and respirators due to the COVID-19 pandemic presents us with another opportunity to fill a need in the medical field. The use of pressure sensors in ventilators and respirators is similar to their use in CPAP and BiPAP. Essentially, when the lungs need assistance taking in air, a machine blows the required amount of air into the lungs. But how does the medical professional monitor and control the required amount of air, or positive airway pressure? This is where pressure sensors play a critical role.

LP Series pressure sensor for mechanical ventilators

Merit Sensor’s LP Series is the ideal pressure sensor for these applications. The LP Series can measure pressure as low as 1 inH₂O (250 Pa) with resolution better than 0.001 inH₂O (<0.1 Pa). It was designed to measure differential or gauge pressure, depending on the application. It contains two pressure ports to which tubing can be connected, one tube directing pressure to the topside of the MEMS sensing element and the other tube directing pressure to the backside of the MEMS sensing element. It comes in several calibrated pressure ranges, functions with a 3.3- or 5-volt supply, and offers I²C or analog output.

Cross-section image 2 of LP Series pressure sensor

The LP Series, along with all of Merit Sensor’s other products, is made in our on-site wafer fab and assembly areas in Salt Lake City, Utah, USA. Manufacturing our products in our own facility ensures that we have control over product quality and supply chain. It also allows us to customize products to meet the unique demands of our various customers and markets.

We are proud to be a reliable supplier for life-enhancing and life-saving devices, and we hope that our products can play an important role in helping humanity, especially at this time.

Custom Pressure Sensors for the Aerospace Industry

The aerospace industry is known for having some of the harshest environments on the planet and finding a pressure sensor to withstand those harsh environments can be extremely difficult.  The TR Series pressure sensor and HM Series MEMS sensing element are built to withstand temperatures as low as -40°C and as high as 150°C, making them ideal candidates for the Aerospace industry.  The TR Series and HM series measure pressure via direct media pressure sensing to the backside of the die.  Direct media pressure sensing translates into excellent system design flexibility leading to lower cost and ease of manufacture.

TR Aerospace Image

TR Series – TR Series with Ferrule – HM Series Die

So whether your application is Flight control surface positioning, auto-pilot, jet engine throttle and thrust reverser controls, auto-pilot input, landing gear steering and thrust vector control, turbine guide vane, valve controls, turbine actuators, and engine controls or any other number of Aerospace applications Merit Sensor has the right sensor assembly or MEMS sensing element for you.

Merit Sensor Systems, Inc. has partnered with customers for more than 20 years to design, fabricate, assemble and package reliable, cost-effective piezoresistive pressure sensor solutions.

Merit Sensor offers full-service design capabilities, in-house wafer fabrication, flexible shipping, packaging and assembly, piezoresistive technology (PRT), expansive pressure ranges (0.15 psi to 15,000 psi), complete pressure measurement (absolute, gage, differential and vacuum). Additionally, Merit Sensor is able to provide unparalleled flexibility to customize pressure sensing solutions to fit into our customers’ applications. Most customers in the Aerospace industry require a high level of customization because of the demand of the applications.

Unlike other pressure sensor suppliers, Merit Sensor can provide customers with completely customized pressure sensor designs with large or smaller/limited production runs. Our customers range from pressure sensor transducer manufacturers who are already experts in pressure sensing technology and rely on Merit Sensor for highly stable and sensitive MEMS sensing elements (bare die), to customers who have little to no experience in the pressure sensing world and look to Merit Sensor to assist with a completely custom design and implementation of a pressure sensor that best fits their application.

At Merit Sensor our engineers are application experts. We are ready to help customers design your application to work with a pressure sensor, and/or design a customized pressure sensing solution that works for your application. If you are unsure whether a pressure sensor is right for your application, Merit Sensor can help you make that determination.

More questions? Request a quote for a pressure sensor to meet all your automotive engineering needs.

TR Series for Medical Pressure Sensor Applications

When it comes to your patients, you know what’s best. If you could have everything your way, you would. With Merit Sensor’s piezoresistive pressure sensors, you can.

In 1991 when Merit Medical needed a reliable pressure sensor for one of its devices, their search for the right pressure sensor turned up empty. It was then that Merit Sensor was born and we have been constantly innovating to design and customize industry-specific solutions for all your pressure sensing needs ever since.

Our latest innovation, the TR Series, combines Merit Sensor’s proprietary Sentium MEMS piezoresistive technology with state-of-the-art pressure sensor ASIC signal management for best-in-class performance. The TR Series can be used in air pressure sensors, liquid pressure sensors, and gas pressure sensors. It is designed for harsh media compatibility over extreme and extended temperatures (-40°C to 150°C) with a total error band of less than 1%.

We know there are a lot of unpredictable variables you deal with in the medical industry. Pressure sensors shouldn’t be one of them. Whether used in diagnostic or analysis equipment, our MEMS pressure sensors are designed for unparalleled accuracy and reliability.

Further customization options include:

  • Full-service design capabilities
  • In-house wafer fabrication
  • Flexible shipping, packaging, and assembly
  • Piezoresistive technology (PRT)
  • Expansive pressure ranges (.15 psi to 15,000 psi)
  • Absolute, gage, differential, and vacuum pressure measurement

Explore our pressure sensor customization options further or request a quote on our existing series. Whatever your needs, we are your match. If we can’t build it for you, we’ll find someone who can.

Pressure Sensor For All Your Automotive Engineering Needs?

There’s a reason you are still looking for the right automotive pressure sensor. It’s never been on the market… until now.

At Merit Sensor, we are constantly innovating to find the best design. ‘Best’ might seem like a relative term, but not when it comes to our product. Our latest innovation, the TR-Series Pressure Sensor, is the ideal application for high-performance automotive applications.

When it comes to automotive engineering, there are plenty of pieces to the puzzle. Pressure sensors are one of them. Multiple, to be more accurate. Everything from airbag to oil pressure sensors.

We could talk features all day.

You want to know about PSI? It ranges from 30 to 300 PSI.

Flexibility? The TR-Series is designed with sensitivity, resistance, bridge constraint, and more. But forget features. When it comes down to it, you have to be able to trust a pressure series.

Like you, we never know where your automobiles will end up so we plan for the unexpected and the impossible. From freezing temperatures of -40° C to a boiling 150° C, the TR-Series pressure sensor is designed for optimal performance in almost any temperature for extended periods. The TR-Series is a harsh media sensor, so it’s compatible with any harsh environment the pressure sensor could be exposed do including air, liquid, and gas.

The TR-Series was designed for all your automotive pressure sensor needs.

TR-Series-oil-pressure-sensor

The TR Series pressure sensor is used in the following applications:

  • Transmission pressure sensor
  • Oil pressure sensor
  • Fuel rail pressure sensor
  • EGR/Exhaust pressure sensor
  • Fluid pressure sensor, fuel pressure sensors, and other liquid pressure sensor
  • Fuel tank pressure sensor
  • Fuel vapor pressure sensor
  • Fuel rail pressure sensor

More questions? Request a quote for a pressure sensor to meet all your automotive engineering needs.